HIGHLY STEREOSELECTIVE SYNTHESIS OF ERYTHRO-a, B-EPOXY ALCOHOLS BY THE REDUCTION OF α , B-EPOXY KETONES WITH ZINC BOROHYDRIDE¹

> **Tadashi Nakata,* Tadasu Tanaka, and Takeshi Oishi* The Institute of Physical and Chemical Research (Riken) Wako-shi, Saitama, 351 Japan**

Summary: Erythro-a, B-epoxy alcohols were prepared in high stereoselectivity by zinc borohydride reduction of the corresponding α , β -epoxy ketones regardless of the **substituents on the epoxide ring.**

Epoxidation of the allyl alcohols (1) with tert-butyl hydroperoxide catalyzed by VO(acac)₂ was reported to give the corresponding erythro-α, β-epoxy alcohols (2), a useful synthon for the syntheses of polyoxo macrolide antibiotics, in high stereoselectivity.² The same erythroα, β-epoxy alcohols (2) can also be obtained by NaBH₄ reduction of the corresponding α, β-epoxy ketones (4).³ However, in both cases, the stereoselectivity is known to be subtly affected by **the substituents on the starting materials. Namely, the rather low selectivity was obtained** when the α substituent is hydrogen in the epoxidation of l . On the other hand, the selectivity is almost lost when the substituent at the α position is methyl in the reduction of 4 . In the cases where the substituent at the β^C position is methyl in 1, the isomeric threo-epoxy alcohols (3) are produced in high selectivity on epoxidation. We now report that zinc borohydride reduction of α, β-epoxy ketones (4) affords the <u>erythro</u>-epoxy alcohols (2) in high stereoselectivity irrespective of the substitution pattern of the epoxide.⁴

In the previous paper, 5 we reported that zinc borohydride reduction of β -keto esters **afforded the erythro-B-hydroxy esters almost exclusively when the ketones were conjugated with the unsaturated systems. These results were reasonably rationallized by taking account of a cyclic transition state in which both of the carbonyl oxygens coordinated to a zinc cation.** This type of mechanism was expected to be valid for the reduction of the α , β -epoxy ketones **(2, since both oxygens were nicely located to form a zinc mediated transition state. In fact,** when α , β -epoxy ketones $(4)^6$ were treated with zinc borohydride⁷ in ether, the erythro- α , β epoxy alcohols (2) were produced in high stereoselectivity in all cases examined. The results were summerized in Table 1. The reported data for NaBH_A reduction³ were also presented in **Table 1 for comparison.**

4723

	α , β -Epoxy Ketone (4)	Product <u>erythro</u> (2) : threo (3)	$Yield^{\underline{a}}$	\overline{p} NaBH ₄ erythro (2): threo (3)
$\stackrel{4a}{\sim}$	Me $\ddot{\rm o}$	98 : $2^{\frac{C}{c}}$	80 %	100 : $\pmb{0}$
$4b$:	Me Me $\ddot{\mathbf{0}}$	90 : $10^{\frac{d}{c}}$	76 %	55 45 $\ddot{\cdot}$
4c:	Me Me Me Ω	$84 : 16 \frac{d}{ }$	79 %	65 35 $\ddot{\Sigma}$
$4d$:	Me Et ٥ Ő	$\frac{d}{1}$ 99:	76 %	
$\stackrel{\text{4e}}{\sim}$	Мe Et, Et $\frac{1}{0}$	$1^{\frac{d}{}}$ 99 :	83 %	
$4f$:	Me n-Bu $\frac{1}{0}$	$3^{\frac{d}{ } }$ 97:	87 %	
$4g$:	Me Me $\frac{11}{0}$ Me	>99 : $\lt1^{\frac{d}{c}}$	83 %	86 : 14
$\frac{4h}{2}$	Me Me Me. ő Me [*]	>99 : <1 ^d	86 %	46 : 54
	ℓ			

Table 1. Reduction of α , β -Epoxy Ketones (4) with Zn(BH₄)₂

^a Combined isolated yield. ^b Cited from ref. 3. ^C Ratio determined by ¹³C NMR data. **Gatio determined by GLC on 2 m column packed with 10 % Carbowax 20M/Celite-545.**

A typical procedure is as follows: To an ice cold solution of 165 mg (1.45 m mol) of 3, 4-epoxy-4-methyl-2-pentanone (4g) in 2 ml of anhyd. ether was added 3 ml (ca. 0.44 m mol) **of zinc borohydride in ether under argon with stirring. After 45 min at 0 "C, 1 ml of water was added and stirring was continued for an additional 30 min, and then the solvent was dried** over MgSO₄. The ether solution was directly subjected to GLC to determine the ratio of erythro - and <u>threo</u>-alcohols (2 and 3).⁸ The solvent was then evaporated to give 140 mg of erythro-**3, 4-epoxy-4-methyl-2-pentanol (2).**

Recently, excellent methods for the synthesis of optically active a, B-epoxy ketones or α , β -epoxy alcohols are reported.⁹ Therefore, when the present reduction is combined with these methods, optically active erythro-a, **B-epoxy alcohols are expected to be prepared**.

Chautemps and Pierre³ have proposed the chelated model (A) for the transition state of the NaBH₄ reduction of the epoxy ketones (4) as shown in Fig. 1, in which the hydride attacked **a carbonyl group from the less hindered side. The fact that the stereoselectivity is almost** lost when the α -substituent is methyl in their cases ($2b : 3b = 55 : 45$, $2c : 3c = 65 : 35$; see Table 1) can be explained by this model. However, Bartlett¹⁰ has considered that a **contribution of the chelated transition state involving sodium cation is unlikely particularly in alcohol solvents and he suggested that the transition state of the reduction would be** resembling for the conformation (B) when the α -substituent was hydrogen. The diminished **stereoselectivity observed for the compounds having a methyl group at the a-position can be** ascribed for the destabilization of the conformation (B) due to an interaction of R with the **a-methyl group.**

On the other hand, the high erythro-selectivity was obtained in our Zn(BH₄)₂ reduction **regardless of the substituents on the epoxide ring (Table 1). Therefore, further elaboration** should be necessary to account for these observations. Since $\text{Zn}(BH_A)_{2}$ is used in our case, the chelated model (<u>C</u>) or (D) should now be considered for the transition state.¹¹ It is apparent that the model (C) is much favoured over the model (D) because a severe interaction is present between the reagent and the methylene group at the β -position of the model (D) . Internal hydride transfer subsequently takes place from the model (C). Here, it is highly **expected that the hydride transfer proceeds from the direction shown by the arrow even if a sterically demanding methyl group is present at the a-position, affording the expected erythro-isomers.**

Fig. 1

Further studies are continuing in our laboratory for the stereoselective Zn(BH₄)₂ reduction **of various ketones in other systems and an application of the present method to natural products synthesis is in progress.**

Acknowledqement: This work was supported in part by a Grant-in-Aid for scientific research from the Ministry of Education, Science, and Culture (557495). The authors are grateful to Dr. Hiroshi Yamazaki of this Institute for valuable discussions.

- **1. This work was presented at the 1Olst Annual Meeting of the Pharmaceutical Society of Japan at Kumamoto, April, 1981 (Abstracts of Papers, p. 452)**
- **2. a) B. E. Rossiter, T. R. Verhoeven, and K. B. Sharpless, Tetrahedron Lett., 1979, 4733, and** references cited therein; cf. E. D. Mihelich, ibid., 1979, 4728; K. Takai, K. Oshima, and H. Nozaki, <u>ibid</u>., 21, 1657 (1980). b) Epoxidation of the allyl alcohol (1h) was carried out in this laboratory according to the Sharpless procedure [erythro (2h) : threo (3h) = **23** : **771.**
- **3. P. Chautemps and** J.-L. **Pierre, Tetrahedron, 32, 549 (1976).**
- **4. The same type of reduction has also been successfully carried out by Prof. M. Yamaguchi, Kyushu University; private communication.**
- 5. T. Nakata and T. Oishi, <u>Tetrahedron Lett</u>., <u>21</u>, 1641 (1980).
- **6.** Starting materials (4) were prepared by two methods; i) Epoxidation of enones with 30% H₂O₂ **-aq. NaOH¹² (for 4a, b, c, g, and h). ii) Epoxidation of allyl alcohols (1) with MCPBA** followed by Jones oxidation (for 4d, e, and f).
- /. W.J.Gensler,F.Johnson,and A.D.B.Sloan,<u>J.Am.Chem.Soc</u>.,<u>82</u>,60/4(1960).
- **8. Authentic samples of ervthro- and m-epoxy alcohols (2_andJ) were prepared by the method of Sharpless. 2a**
- **9. S. Julia, J. Masana, and J. C. Vega, Anqew. Chem. Intern. Ed., 2, 929 (1980); T. Katsuki and K. B. Sharpless, J. Am. Chem. Sot., 102, 5974 (1980); B. E. Rossiter, T. Katsuki, and** K. B. Sharpless, ibid., 103, 464 (1981).
- 10. P. A. Bartlett, <u>letrahedron</u>, 36, 2 (1980).
- 11. The reagent Zn(BH₄)₂ is expected to exist as a contact ion pair in ether¹³ and its struc**ture may be shown as,5, since the structure of Cp2Nb(CO)H*Zn(BH4)2 is determined by X-ray** crystallography as E.¹⁴ It is known that Zn²⁺ can form a six-coordinated complex (<u>cf</u>. [Zn(NH₃₎₆]^{Z+}).¹⁵ Therefore, in the model (C), a six-coordinated structure is tentatively **adopted for a simple understanding of a gross structure for the transition state, although there is no direct evidences for that. The more stable four-coordinated structure produced by Zn-H bond cleavage may also be considered.**

- 12. P. S. Wilder and A. A. Polnick, U. S. Patent 2431/18 (1947)[<u>C. A</u>., <u>42,</u> 3430' (1948)]; P. Baret, J.-L. Pierre, and R. Heilmann, Bull. Soc. Chim. Fr., 4735 (1967); H. O. House and **R. S. Ro, J. Am. Chem. Sot.,** 8J, **2428 (1958).**
- **13.** 6. **E. C. Ashby, F. R. Dobbs, and H. P. Hopkins,** Jr., ibid., 2, 2823 **(1973); idem** , **ibid., 97, 3158 (1975).**
- **14. M. A. Porai-Koshits, A. S. Antsyshikina, A. A. Pasynskii, G. G. Sadikov, Yu. V. Skripkin,** and V. N. Ostrikova, <u>Inorg. Chem. Acta</u>., 34, L 285 (1979).
- **15. D. P. Graddon, "An Introduction to Co-Ordination Chemistry", Pergamon Press, 1961, p. 15.**

(Received in Japan 4 August 1981)